3.236 \(\int \frac{\log ^2(c (b x^n)^p)}{x^4} \, dx\)

Optimal. Leaf size=52 \[ -\frac{\log ^2\left (c \left (b x^n\right )^p\right )}{3 x^3}-\frac{2 n p \log \left (c \left (b x^n\right )^p\right )}{9 x^3}-\frac{2 n^2 p^2}{27 x^3} \]

[Out]

(-2*n^2*p^2)/(27*x^3) - (2*n*p*Log[c*(b*x^n)^p])/(9*x^3) - Log[c*(b*x^n)^p]^2/(3*x^3)

________________________________________________________________________________________

Rubi [A]  time = 0.0702828, antiderivative size = 52, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 16, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.188, Rules used = {2305, 2304, 2445} \[ -\frac{\log ^2\left (c \left (b x^n\right )^p\right )}{3 x^3}-\frac{2 n p \log \left (c \left (b x^n\right )^p\right )}{9 x^3}-\frac{2 n^2 p^2}{27 x^3} \]

Antiderivative was successfully verified.

[In]

Int[Log[c*(b*x^n)^p]^2/x^4,x]

[Out]

(-2*n^2*p^2)/(27*x^3) - (2*n*p*Log[c*(b*x^n)^p])/(9*x^3) - Log[c*(b*x^n)^p]^2/(3*x^3)

Rule 2305

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*Lo
g[c*x^n])^p)/(d*(m + 1)), x] - Dist[(b*n*p)/(m + 1), Int[(d*x)^m*(a + b*Log[c*x^n])^(p - 1), x], x] /; FreeQ[{
a, b, c, d, m, n}, x] && NeQ[m, -1] && GtQ[p, 0]

Rule 2304

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*Log[c*x^
n]))/(d*(m + 1)), x] - Simp[(b*n*(d*x)^(m + 1))/(d*(m + 1)^2), x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[m, -1
]

Rule 2445

Int[((a_.) + Log[(c_.)*((d_.)*((e_.) + (f_.)*(x_))^(m_.))^(n_)]*(b_.))^(p_.)*(u_.), x_Symbol] :> Subst[Int[u*(
a + b*Log[c*d^n*(e + f*x)^(m*n)])^p, x], c*d^n*(e + f*x)^(m*n), c*(d*(e + f*x)^m)^n] /; FreeQ[{a, b, c, d, e,
f, m, n, p}, x] &&  !IntegerQ[n] &&  !(EqQ[d, 1] && EqQ[m, 1]) && IntegralFreeQ[IntHide[u*(a + b*Log[c*d^n*(e
+ f*x)^(m*n)])^p, x]]

Rubi steps

\begin{align*} \int \frac{\log ^2\left (c \left (b x^n\right )^p\right )}{x^4} \, dx &=\operatorname{Subst}\left (\int \frac{\log ^2\left (b^p c x^{n p}\right )}{x^4} \, dx,b^p c x^{n p},c \left (b x^n\right )^p\right )\\ &=-\frac{\log ^2\left (c \left (b x^n\right )^p\right )}{3 x^3}+\operatorname{Subst}\left (\frac{1}{3} (2 n p) \int \frac{\log \left (b^p c x^{n p}\right )}{x^4} \, dx,b^p c x^{n p},c \left (b x^n\right )^p\right )\\ &=-\frac{2 n^2 p^2}{27 x^3}-\frac{2 n p \log \left (c \left (b x^n\right )^p\right )}{9 x^3}-\frac{\log ^2\left (c \left (b x^n\right )^p\right )}{3 x^3}\\ \end{align*}

Mathematica [A]  time = 0.0017769, size = 52, normalized size = 1. \[ -\frac{\log ^2\left (c \left (b x^n\right )^p\right )}{3 x^3}-\frac{2 n p \log \left (c \left (b x^n\right )^p\right )}{9 x^3}-\frac{2 n^2 p^2}{27 x^3} \]

Antiderivative was successfully verified.

[In]

Integrate[Log[c*(b*x^n)^p]^2/x^4,x]

[Out]

(-2*n^2*p^2)/(27*x^3) - (2*n*p*Log[c*(b*x^n)^p])/(9*x^3) - Log[c*(b*x^n)^p]^2/(3*x^3)

________________________________________________________________________________________

Maple [F]  time = 0.026, size = 0, normalized size = 0. \begin{align*} \int{\frac{ \left ( \ln \left ( c \left ( b{x}^{n} \right ) ^{p} \right ) \right ) ^{2}}{{x}^{4}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(ln(c*(b*x^n)^p)^2/x^4,x)

[Out]

int(ln(c*(b*x^n)^p)^2/x^4,x)

________________________________________________________________________________________

Maxima [A]  time = 1.10404, size = 62, normalized size = 1.19 \begin{align*} -\frac{2 \, n^{2} p^{2}}{27 \, x^{3}} - \frac{2 \, n p \log \left (\left (b x^{n}\right )^{p} c\right )}{9 \, x^{3}} - \frac{\log \left (\left (b x^{n}\right )^{p} c\right )^{2}}{3 \, x^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(log(c*(b*x^n)^p)^2/x^4,x, algorithm="maxima")

[Out]

-2/27*n^2*p^2/x^3 - 2/9*n*p*log((b*x^n)^p*c)/x^3 - 1/3*log((b*x^n)^p*c)^2/x^3

________________________________________________________________________________________

Fricas [A]  time = 0.773725, size = 235, normalized size = 4.52 \begin{align*} -\frac{9 \, n^{2} p^{2} \log \left (x\right )^{2} + 2 \, n^{2} p^{2} + 6 \, n p^{2} \log \left (b\right ) + 9 \, p^{2} \log \left (b\right )^{2} + 6 \,{\left (n p + 3 \, p \log \left (b\right )\right )} \log \left (c\right ) + 9 \, \log \left (c\right )^{2} + 6 \,{\left (n^{2} p^{2} + 3 \, n p^{2} \log \left (b\right ) + 3 \, n p \log \left (c\right )\right )} \log \left (x\right )}{27 \, x^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(log(c*(b*x^n)^p)^2/x^4,x, algorithm="fricas")

[Out]

-1/27*(9*n^2*p^2*log(x)^2 + 2*n^2*p^2 + 6*n*p^2*log(b) + 9*p^2*log(b)^2 + 6*(n*p + 3*p*log(b))*log(c) + 9*log(
c)^2 + 6*(n^2*p^2 + 3*n*p^2*log(b) + 3*n*p*log(c))*log(x))/x^3

________________________________________________________________________________________

Sympy [B]  time = 7.73749, size = 151, normalized size = 2.9 \begin{align*} - \frac{n^{2} p^{2} \log{\left (x \right )}^{2}}{3 x^{3}} - \frac{2 n^{2} p^{2} \log{\left (x \right )}}{9 x^{3}} - \frac{2 n^{2} p^{2}}{27 x^{3}} - \frac{2 n p^{2} \log{\left (b \right )} \log{\left (x \right )}}{3 x^{3}} - \frac{2 n p^{2} \log{\left (b \right )}}{9 x^{3}} - \frac{2 n p \log{\left (c \right )} \log{\left (x \right )}}{3 x^{3}} - \frac{2 n p \log{\left (c \right )}}{9 x^{3}} - \frac{p^{2} \log{\left (b \right )}^{2}}{3 x^{3}} - \frac{2 p \log{\left (b \right )} \log{\left (c \right )}}{3 x^{3}} - \frac{\log{\left (c \right )}^{2}}{3 x^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(ln(c*(b*x**n)**p)**2/x**4,x)

[Out]

-n**2*p**2*log(x)**2/(3*x**3) - 2*n**2*p**2*log(x)/(9*x**3) - 2*n**2*p**2/(27*x**3) - 2*n*p**2*log(b)*log(x)/(
3*x**3) - 2*n*p**2*log(b)/(9*x**3) - 2*n*p*log(c)*log(x)/(3*x**3) - 2*n*p*log(c)/(9*x**3) - p**2*log(b)**2/(3*
x**3) - 2*p*log(b)*log(c)/(3*x**3) - log(c)**2/(3*x**3)

________________________________________________________________________________________

Giac [B]  time = 1.31286, size = 128, normalized size = 2.46 \begin{align*} -\frac{n^{2} p^{2} \log \left (x\right )^{2}}{3 \, x^{3}} - \frac{2 \,{\left (n^{2} p^{2} + 3 \, n p^{2} \log \left (b\right ) + 3 \, n p \log \left (c\right )\right )} \log \left (x\right )}{9 \, x^{3}} - \frac{2 \, n^{2} p^{2} + 6 \, n p^{2} \log \left (b\right ) + 9 \, p^{2} \log \left (b\right )^{2} + 6 \, n p \log \left (c\right ) + 18 \, p \log \left (b\right ) \log \left (c\right ) + 9 \, \log \left (c\right )^{2}}{27 \, x^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(log(c*(b*x^n)^p)^2/x^4,x, algorithm="giac")

[Out]

-1/3*n^2*p^2*log(x)^2/x^3 - 2/9*(n^2*p^2 + 3*n*p^2*log(b) + 3*n*p*log(c))*log(x)/x^3 - 1/27*(2*n^2*p^2 + 6*n*p
^2*log(b) + 9*p^2*log(b)^2 + 6*n*p*log(c) + 18*p*log(b)*log(c) + 9*log(c)^2)/x^3